

The QMA7981 is a single chip three-axis accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep quality, gaming and personal navigation in mobile and wearable smart devices.

The QMA7981 is based on our state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The I²C serial bus allows for easy interface.

The QMA7981 is in a 2x2x0.95mm3 surface mount 12-pin land grid array (LGA) package.

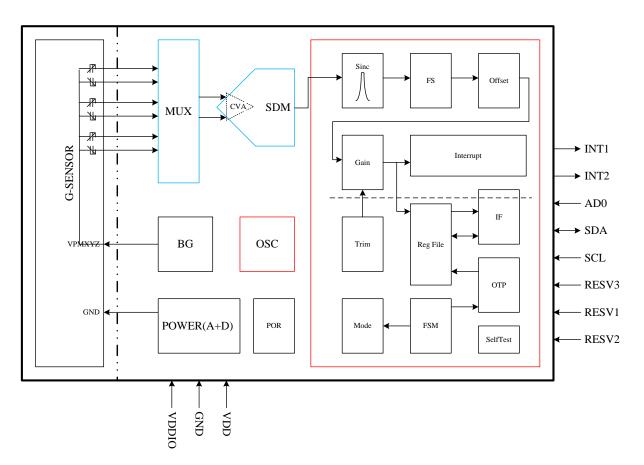
FEATURES

- 3-Axis Accelerometer in a 2x2x0.95 mm³ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to +85 °C.
- 14-Bit ADC with low noise accelerometer sensor
- I²C Interface with Standard and Fast modes.
- Built-In Self-Test
- Wide range operation voltage (1.71V To 3.6V) and low power consumption (2-50µA low power conversion current)
- RoHS compliant , halogen-free
- Built-in motion algorithm

BENEFIT

- Small size for highly integrated products. Signals have been digitized and factory trimmed.
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep quality, gaming and personal navigation

Advanced Information


CONTENTS

CO	NTENTS	2
1	INTERNAL SCHEMATIC DIAGRAM	3
	1.1 Internal Schematic Diagram	3
2	SPECIFICATIONS AND I/O CHARACTERISTICS	4
	2.1 Product Specifications	
	2.2 Absolute Maximum Ratings	5
	2.3 I/O Characteristics	5
3	PACKAGE PIN CONFIGURATIONS	5
	3.1 Package 3-D View	5
	3.2 Package Outlines	6
4	EXTERNAL CONNECTION	9
	4.1 Dual Supply Connection	9
	4.2 Single Supply connection	
5	BASIC DEVICE OPERATION	
	5.1 Acceleration Sensors	10
	5.2 Power Management	10
	5.3 Power On/Off Time	11
	5.4 Communication Bus Interface I ² C and Its Addresses	
6	MODES OF OPERATION	12
	6.1 Modes Transition	12
	6.2 Description of Modes	14
7	Functions and interrupts	14
	7.1 STEP_INT	14
	7.2 DRDY_INT	15
	7.3 Interrupt configuration	
8	I ² C COMMUNICATION PROTOCOL	17
	8.1 I ² C Timings	17
	8.2 I ² C R/W Operation	17
9	REGISTERS	18
	9.1 Register Map	18
	9.2 Register Definition	19

 の の 睿

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

Figure 1. Block Diagram

Table 1. Block Function

Block	Function
Transducer	3-axis acceleration sensor
CVA	Charge-to-Voltage amplifier for sensor signals
Interrupt Digital interrupt engine, to generate interrupt signal on data conver and motion function	
FSM Finite state machine, to control device in different mode	
I ² C	Interface logic data I/O
OSC Internal oscillator for internal operation	
Power	Power block, including LDO

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 **Product Specifications**

Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

Parameter	Conditions	Min	Тур	Max	Unit
Supply voltage VDD	VDD, for internal blocks	1.71	3.3	3.6	V
I/O voltage VDDIO	VDDIO, for IO only	1.71	3.3	VDD	V
Standby current	VDD and VDDIO on		1		μA
Low power current	ODR=268 Hz		50		μA
Low power current	ODR=134 Hz		25.3		μA
Low power current	ODR=67 Hz		12.9		μA
Low power current	ODR=33.6 Hz		6.7		μA
Low power current	ODR=13.4 Hz		2.9		μA
Low power current	ODR=6.7 Hz		1.7		μA
Low noise current	ODR=32.5 Hz		100		μA
Low noise current	ODR=21.6 Hz		83.3		μA
Low noise current	ODR=13 Hz		50		μA
Low noise current	ODR=6.5 Hz		25		μA
BW	Programmable bandwidth		0.16~336		Hz
Data output rate (ODR)	2*BW		0.32~672		Samples /sec
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		ms
Wakeup time	e From the time device enters into active mode to the time device is ready for conversion		1		ms
Operating temperature		-40		85	°C
Acceleration Full			±2/±4/±8/		
Range			±16/±32		g
Sensitivity	FS=±2g		4096		LSB/g
Sensitivity	FS=±4g		2048		LSB/g
Sensitivity	FS=±8g		1024		LSB/g
Sensitivity	FS=±16g		512		LSB/g
Sensitivity	FS=±32g		256		LSB/g
Sensitivity					
Temperature Drift	FS=±2g, Normal VDD Supplies		±0.02		%/℃
Sensitivity tolerance Gain accuracy			±4		%
Zero-g offset	FS=±2g, Normal VDD Supplies		±80		mg
Zero-g offset Temperature Drift	Zero-g offset		±2		mg/℃
Noise density	FS=±2g, run state		200		µg/sqrtHz
Nonlinearity	$FS=\pm 2g$, Best fit straight line,		±0.5		%FS
Cross Axis Sensitivity			1		%

2.2 Absolute Maximum Ratings

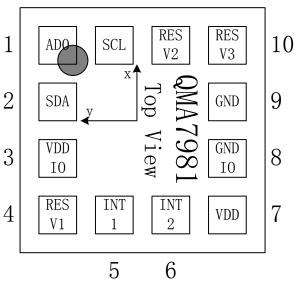
Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwis
--

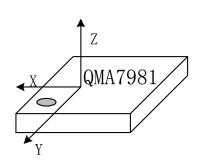
Parameters	Condition	Min	Max	Units
VDD		-0.3	5.4	V
VDDIO		-0.3	5.4	V
ESD	НВМ		2	kV
Shock Immunity	Duration < 200µS		10000	g
Storage temperature		-50	150	°C

2.3 I/O Characteristics

Table 4. I/O Characteristics

Parameter	Symbol	Pin	Condition	Min.	TYP.	Max.	Unit
Voltage Input	V _{IH} 1	SDA, SCL		0.7*VD		VDDIO+	V
High Level 1				DIO		0.3	
Voltage Input	V _{IL} 1	SDA, SCL		-0.3		0.3*VD	V
Low Level 1						DIO	
Voltage Output	V _{OH}	INT1, INT2	Output Current	0.8*VD			V
High Level			≥-100µA	DIO			
Voltage Output	V _{OL}	INT1, INT2,	Output Current			0.2*VD	V
Low Level	-	SDA	≤100µA(INT)			DIO	
			Output Current				
			≤1mA (SDA)				


3 PACKAGE PIN CONFIGURATIONS

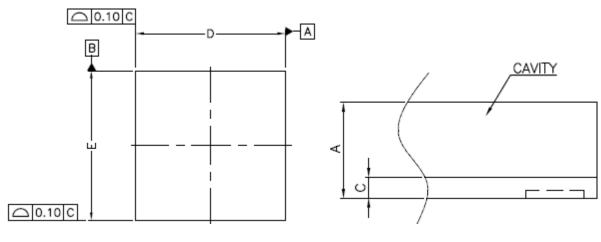

3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.

Figure 2. Package View

PIN	PIN	I/O	Power	TYPE	Function	
No.	NAME		Supply			
1	AD0		VDDIO	CMOS	LSB of I ² C address	
2	SDA	10	VDDIO	CMOS	Serial data for I ² C	
3	VDDIO		VDDIO	Power	Power supply to digital interface	
4	RESV1		VDDIO	CMOS	Reserved. Float or connect to GND	
5	INT1	0	VDDIO	CMOS	Interrupt 1	
6	INT2	0	VDDIO	CMOS	Interrupt 2	
7	VDD		VDD	Power	Power supply to internal block	
8	GNDIO		GND	Power	Ground to digital interface	
9	GND		GND	Power	Ground to internal block	
10	RESV3	10	VDDIO	CMOS	Reserved	
11	RESV2	10	VDDIO	CMOS	Reserved	
12	SCL	1	VDDIO	CMOS	Serial clock for I ² C	

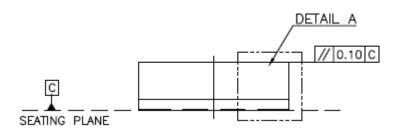
3.2 Package Outlines

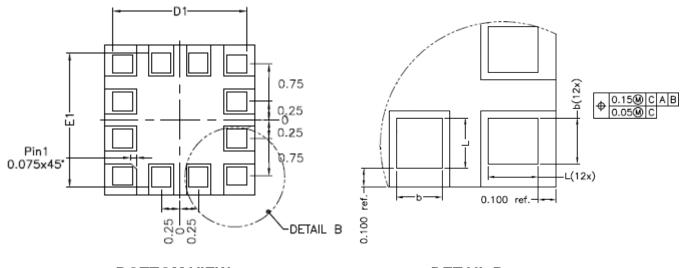

3.2.1 Package Type

LGA (Land Grid Array)

3.2.2 Package Outline Drawing:

2.0mm (Length)*2.0mm (Width)*0.95mm (Height)




TOP VIEW

13-52-12

BOTTOM VIEW

DETAIL B

	D	IMENSION	1	[IMENSIO	V
SYMBOL		(MM)			(inch)	
	MIN.	NØM.	MAX.	MIN.	NOM.	MAX.
Α	0.90	0.95	1.00	0.035	0.037	0.039
С	0.16	0.20	0.24	0.006	0.008	0.009
b	0.20	0.25	0.30	0.008	0.010	0.012
D	1.95	2.00	2.05	0.077	0.079	0.081
D1		1.80 BSC			.071 BS	С
E	1.95	2.00	2.05	0.077	0.079	0.081
E1	1.80 BSC			C	.071 BS	С
L	Q.225	0.275	0.325	0.010	0.012	0.014

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

Figure 3. Package Outline Drawing

3.2.3 Marking:

Figure 4. Marking Format

Marking Text	Description	Comments
Line 1 Product Name		"7981" stand for QMA7981
Line 2	Y: the last digital of year CCC: lot code	Lot code: 3 alphanumeric digits, variable to generate mass production trace-code
Line 3	P: Part number S: Sub-con ID	P: 1 alphanumeric digit, variable to identify part number S: 1 alphanumeric digit, variable identify sub-con
•	Pin 1 identifier	

4 EXTERNAL CONNECTION

4.1 Dual Supply Connection

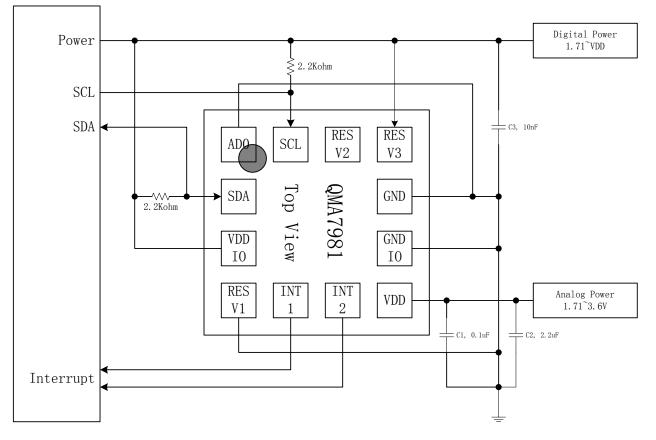


Figure 5. Dual Supply Connection

4.2 Single Supply connection



Figure 6. Single Supply Connection

5 BASIC DEVICE OPERATION

5.1 Acceleration Sensors

The QMA7981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

5.2 **Power Management**

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

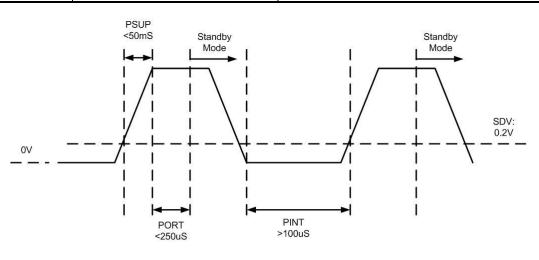
The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6.Power States


Power State	VDD	VDDIO	Power State description
1	0V	0V	Device Off, No Power Consumption
2	0V	1.71v~3.6v	Not allowed. User need to make sure that VDDIO is less than VDD. Otherwise, there will be leakage from VDDIO to VDD through internal ESD devices
3	1.71v~3.6v	0	Device Off, Same Current as Standby Mode
4	1.71v~3.6v	1.71v~VDD	Device On, Normal Operation Mode, Enters Standby Mode after POR

5.3 Power On/Off Time

After the device is powered on, some time periods are required for the device fully functional. The external power supply requires a time period for voltage to ramp up (PSUP), typically 50 milli-second. However it isn't controlled by the device. The Power–On–Reset time period (PORT) includes time to reset all the logics, load values in NVM to proper registers, enter the standby mode and get ready for analogy measurements. The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR	PORT	Time Period After VDD and			250	μs
Completion		VDDIO at Operating Voltage to				
Time		Ready for I ² C Commend and				
		Analogy Measurement.				
Power off	SDV	Voltage that Device Considers			0.2	V
Voltage		to be Power Down.				
Power on	PINT	Time Period Required for	100			μs
Interval		Voltage Lower Than SDV to				
		Enable Next POR				
Power on Time	PSUP	Time Period Required for			50	ms
		Voltage from SDV to 90% of				
		final value				

Power On/Off Timing

Figure 7. Power On/Off Timing

5.4 Communication Bus Interface I²C and Its Addresses

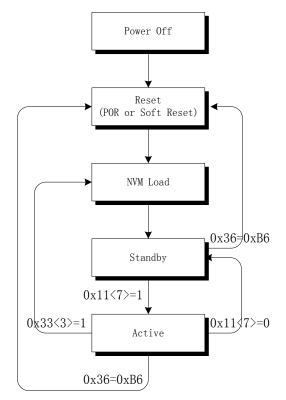
This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C.

This device is compliant with I²C -Bus Specification, document number: 9398 393 40011. As an I²C compatible device, this device has a 7-bit serial address and supports I²C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I^2C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. The first six MSB are hardware configured to "001001" and the LSB can be configured by AD0.

Table 8. I²C Address Options

AD0 (pin 1)	I ² C Slave Address(HEX)	I ² C Slave Address(BIN)
Connect to GND	12	0010010
Connect to VDDIO	13	0010011


6 MODES OF OPERATION

6.1 Modes Transition

QMA7981 has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I²C commands. The default mode after power-on is standby mode.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of QST.

Figure 8. Basic operation flow after power-on

The default mode after power on is standby mode. Through I^2C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

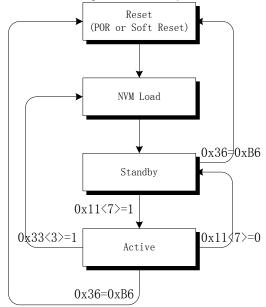


Figure 9. The work mode transferring

6.2 Description of Modes

6.2.1 Active Mode

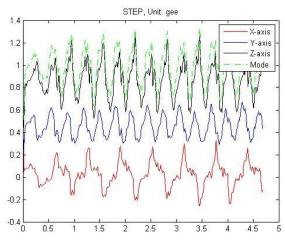
In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers (0x01~0x06).

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through I^2C . Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE_BIT (0x11<7>) to logic 0.

Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM_LOAD (0x33<3>) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM_RDY (0x33<2>) is set to logic 0 by device. After NVM loading is finished, NVM_RDY (0x33<2>) is set back to logic 1 by device, and NVM_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If the user sets this NVM_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE_BIT (0x11<7>) to logic 1.

After loading NVM, the device will enter into standby mode directly.


The loading time for NVM is about 100uS.

7 Functions and interrupts

ASIC support interrupts, such as STEP_INT, DRDY_INT

7.1 STEP_INT

The STEP/STEP_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.

Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP_SAMPLE_CNT (0x12<4:0>). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.

Register STEP_PRECISION (0x13<6:0>) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or	14 / 25
disclosed in whole or in part without prior written permission of QST.	14 / 23

The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and STEP_TIME_LOW(0x14), the conversion ODR numbers ranged from STEP_TIME_LOW *ODR to 8* STEP_TIME_UP*ODR. Also if no new run step event detected until the up limited timing threshold, STEP_QUIT INT will generation.

To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after 4 continuous steps detected. Also, the step counter register STEP_CNT_/ STEP_CNT_MSB (0x07,0x08) will be updated immediately by value 4, and interrupt STEP is also generated.

The related interrupt status bit is STEP_INT (0x0A<3>) and STEP_QUIT_INT (0x0A<2>). When the interrupt is generated, the value of STEP_INT/ STEP_QUIT_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_EN/STEP_QUIT_EN (0x16<3>/0x16<2>) is the enable bit for the STEP_INT/STEP_QUIT_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP (0x19<3>)/INT1_STEP_QUIT (0x19<2>) or INT2_STEP (0x1B<3>) /INT2_STEP_QUIT (0x1B<2>) to logic 1, to map the interrupt to the interrupt PINs.

7.2 DRDY_INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user. Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point.

RANGE	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488ug/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

7.3 Interrupt configuration

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or	15 / 25
disclosed in whole or in part without prior written permission of QST.	15725

The interrupt status registers update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21<0>).

In non-latched mode, the interrupt status bit and the mapped interrupt pin are cleared as soon as the associated conditions are no more valid, or read operation to the INT_STAT (0x09~0x0d). Exceptions to this are the new data, orientation, and flat interrupts, which are automatically reset after a fixed time.

In latched mode, the clearings of the interrupt status and selected pin are determined by INT_RD_CLR (0x21<7>). If INT_RD_CLR=0, read operation to the INT_STAT will clear the interrupt and the selected pin. If INT_RD_CLR=1, any read operation to the device will clear the interrupt and the selected pin.

If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT_MAP (0x19~0x1B).

The electrical interrupt pins can be set in INT_PIN_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.

If the interrupt mode is configured as latched mode, the interrupt can also be cleared by I^2C reading any of the interrupt status register (0x09 ~ 0x0d).

8 I²C COMMUNICATION PROTOCOL

8.1 I²C Timings

Table 9 and Figure 11 describe the I²C communication protocol times

13-52-12

Table 9. I²C Timings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL Clock	f _{scl}		0		400	kHz
SCL Low Period	t _{low}		1			μs
SCL High Period	t _{high}		1			μs
SDA Setup Time	t _{sudat}		0.1			μs
SDA Hold Time	t _{hddat}		0		0.9	μs
Start Hold Time	t _{hdsta}		0.6			μs
Start Setup Time	t _{susta}		0.6			μs
Stop Setup Time	t _{susto}		0.6			μs
New Transmission	t _{buf}		1.3			
Time						μs
Rise Time	t _r					μs
Fall Time	t _f					μs

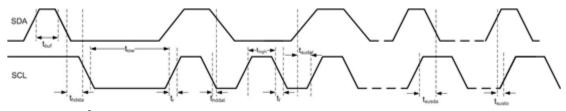


Figure 11. I²C Timing Diagram

8.2 I²C R/W Operation

8.2.1 Abbreviation

Table 10. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or	
disclosed in whole or in part without prior written permission of QST.	

q ぱ _{砂睿}

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I²C Write

ST	Slave Address	R W	S/	R	egis	ter (0x ⁻		dres	SS		Ś			(Da (0x)					Ś	Ŋ
ART	0 0 1 0 0 1 0	0	АСК	0 0	0	1	Ó	0	0	1	ACK	1	0	0	0	0	0	0	0	ACK	ΓΟΡ

8.2.4 I²C Read

 I^2C write sequence consists of a one-byte I^2C write phase followed by the I^2C read phase. A start condition must be generated between two phase. The I^2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I²C write command.

Table 12. I²C Read

ST		Sl	ave	Ac	ldre	ess		R W	S	Register Address (0x00)																		
START	0	0	1	0	0	1	0	0	SACK	0	0	0	0	0	0	0	0	SACK										
ST		Sla	ave	e Ac	ldre	ess		R W	SA		Data (0x00)								Data (0x01)									
START	0	0	1	0	0	1	0	1	ACK	0	0	0	0	Ó	0	1	0	MACK	0	0	0	0	0	0	0	0		
M,)ata x02				MA									Ň				Da (0x	ata 07)				ź	S
MACK	0	0	0	Ò	0	0	1	0	ACK	····							MACK	0	0	0	0	0	0	0	0	NACK	STOP	

9 REGISTERS

9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 13. Register Map

Add.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W	DEF
0x3F						-	1			R	00
0x3E		OLTN: 7/7 O								RW RW	00 NVM
0x3D 0x3C		GAIN_Z<7:0> GAIN_Y<7:0>								RW RW	NVM
0x3E		GAIN X<7:0>								RW	NVM
0x3A	1	OFFSET_Z<7:0>								RW	NVM
0x39		OFFSET_Y<7:0>								R₩	NVM
0x38		OFFSET_X<7:0>					1			RW	NVM
0x37 0x36	IMAGE S RESET	OFFSET_X<10:8	s> B6 / NVM UNLOC	W. 0	GAIN_	Z<9:8>	I	OFFSET_Y<10:8	>	RW RW	NVM 00
0x36 0x35		SUFIRESET: UX	DO / NVM_UNLUC	N: UXD3	1		1	1		R	FF
0x34										R	FF
	NVM_CFG					NVM_LOAD	NVM_RDY	NVM_PROG	NVM_LOAD_DONE	RW	05
0x32	ST	SELFTEST_BIT					SELFTEST_SIGN			RW	00
0x31	<u> </u>				1		1	r			00
0x30 0x2F					ļ		Į			RW RW	3F 00
0x2F 0x2E	-							1			00
0x2D	1									RW	00
0x2C	1									RW	00
0x2B							r			RW	0A
0x2A			<u> </u>		0.0 0110	<i></i>	1			RW	04
0x29 0x28	-				OS_CUST	<u>_Z<7:0></u> Y<7:0>				RW RW	00
	OS_CUST					_1<7:0>				RW	00
0x26	00_0001				00_0001					RW	CO
0x25]					-				RW	0F
0x24										RW	81
0x23	4									RW	30
0x22 0x21	INT CONF	INT RD CLR	SHADOW DIS	•	1		1	1	LATCH INT	RW RW	<mark>09</mark> 00
0x20			SILLOW_DIS			INT2 OD	INT2 LVL	INT1 OD	INT1 LVL	RW	05
0x1F		STEP_START_CNT			STE	P_COUNT_FILT<			_SEL<1:0>	RW	00
0x1E										R	FF
	STEP_CONF					RVAL<7:0>	1	r		RW	00
0x1C 0x1B			INT2 SIG STEP		INT2_DATA	INT2 STEP					00
0x1A			<u>1112_010_01Li</u>		INT1 DATA	1012_016					00
	INT_MAP		-			THE OWER				RW	00
0x18			INT1 SIG STEP			INT1 STEP					
0x17			INT1_SIG_STEP			INTI_STEP				RW	00
]				INT_DATA_EN					RW RW	00
0x16	INT_EN		INT1_SIG_STEP SIG_STEP_EN			STEP_EN				RW RW RW	00 00
0x16 0x15	INT_EN				STEP_TIM	STEP_EN E_UP<7:0>				RW RW RW RW	00 00 00
0x16 0x15 0x14	INT_EN	STEP CLR			STEP_TIM	<u>STEP_EN</u> E_UP<7:0>	::0>			RW RW RW RW	00 00 00 00
0x16 0x15 0x14 0x13 0x12	INT_EN				STEP_TIM STEP_TIME ST	STEP_EN E_UP<7:0> :_LOW<7:0> EP_PRECISION<6 STE	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW	00 00 00 00 00 00 0C
0x16 0x15 0x14 0x13 0x12 0x11	INT_EN STEP_CONF PM			T_RSTB_SIN	STEP_TIM STEP_TIME ST	STEP_EN E_UP<7:0> :_LOW<7:0> EP_PRECISION<6	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW	00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x11	INT_EN STEP_CONF PM BW	STEP_START		T_RSTB_SIN	STEP_TIM STEP_TIME STI	STEP_EN E_UP<7:0> :_LOW<7:0> 3P_PRECISION<6	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW	00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F	INT_EN STEP_CONF PM BW	STEP_START		T_RSTB_SIN	STEP_TIM STEP_TIME STI	STEP_EN E_UP<7:0> :_LOW<7:0> EP_PRECISION<6 STE	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW	00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E	INT_EN STEP_CONF PM BW	STEP_START MODE_BIT		T_RSTB_SIN	STEP_TIM STEP_TIME STI	STEP_EN E_UP<7:0> :_LOW<7:0> 3P_PRECISION<6	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW	00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F	INT_EN STEP_CONF PM BW	STEP_START		T RSTB SIN	STEP_TIM STEP_TIME STI	STEP_EN E_UP<7:0> :_LOW<7:0> 3P_PRECISION<6	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW RW RW R R R	00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0F 0x0D 0x0C 0x0B	INT_EN STEP_CONF PM BW	STEP_START MODE_BIT	SIG_STEP_EN	T RSTB SIN	STEP_TIM STEP_TIME STI	STEP EN E UP<7:0> LOW<7:0> E UP<7:0> STE MCLK_SEL<3:0> RANGE<3:0>	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW RW RW R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x0F 0x0F 0x0F 0x0C 0x0D 0x0C 0x0B 0x0A	INT_EN STEP_CONF PM BW FSR	STEP_START MODE_BIT		T RSTB SIN	STEP_TIM STEP_TIME STI STI C SEL<1:0>	STEP_EN E_UP<7:0> :_LOW<7:0> 3P_PRECISION<6	EP_SAMPLE_CNT<4	1:0>		RW RW RW RW RW RW RW RW RW RW R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x0F 0x0F 0x0F 0x0B 0x0D 0x0C 0x0B 0x0A 0x09	INT_EN STEP_CONF PM BW FSR	STEP_START MODE_BIT	SIG_STEP_EN	T_RSTB_SIN	STEP_TIM STEP_TIME_ST C_SEL<1:0>	STEP_EN E_UP<(7:0> LOW(7:0> P_PCCISION<66	EP_SAMPLE_CNT<4	1:0>		RW RW RW RW RW RW RW RW RW R R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08	INT_EN STEP_CONF PM BW FSR INT_ST	STEP_START MODE_BIT	SIG_STEP_EN	T. RSTB_SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP EN E UP<7:0> LUW<7:0> 2P PRECISION<6 STE MCLK SEL<3:0> RANGE<3:0> STEP_INT T<15:8>	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW R R R R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x0F 0x0F 0x0F 0x0F 0x0C 0x0B 0x0A 0x0A 0x09 0x08 0x07	INT_EN STEP_CONF PM BW FSR	STEP_START MODE_BIT STEP_CNT_OVFL	SIG_STEP_EN	T RSTB_SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP_EN E_UP<(7:0> LOW(7:0> P_PCCISION<66	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW R R R R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08	INT_EN STEP_CONF PM BW FSR INT_ST STEPCNT	STEP_START MODE_BIT	SIG_STEP_EN	T RSTB SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP EN E UP<7:0> LUW<7:0> 2P PRECISION<6 STE MCLK SEL<3:0> RANGE<3:0> STEP_INT T<15:8>	EP_SAMPLE_CNT<4	1:0>	NEWDATA_Z	RW RW RW RW RW RW RW RW R R R R R R R R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x09 0x08 0x07 0x08 0x05 0x04	INT_EN STEP_CONF PM BW FSR INT_ST STEPCNT	STEP_START MODE_BIT STEP_CNT_OVFL STEP_CNT_OVFL ACC_2<13:6> ACC_2<5:0> ACC_2<3:6>	SIG_STEP_EN	T_RSTB_SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP EN E UP<7:0> LUW<7:0> 2P PRECISION<6 STE MCLK SEL<3:0> RANGE<3:0> STEP_INT T<15:8>	EP_SAMPLE_CNT<4	4:0>		RW RW RW RW RW RW RW RW RW RW RW RW RW R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0E 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x09 0x08 0x07 0x06 0x05 0x04 0x03	INT_EN STEP_CONF PM BW FSR INT_ST STEPCNT	STEP_START WODE_BIT STEP_CNT_OVFL STEP_CNT_OVFL ACC_Z<13:6> ACC_Y<13:6> ACC_Y<13:6>	SIG_STEP_EN	T RSTB SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP EN E UP<7:0> LUW<7:0> 2P PRECISION<6 STE MCLK SEL<3:0> RANGE<3:0> STEP_INT T<15:8>	EP_SAMPLE_CNT<4	4:0>	NEWDATA_Z NEWDATA_Y	RW RW RW RW RW RW RW RW RW RW RW RW RW R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x05 0x04 0x05 0x05 0x04 0x05 0x05 0x06 0x05 0x06 0x07 0x06 0x07 0x06 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x08 0x07 0x08	INT_EN STEP_CONF PM BW FSR INT_ST STEPCNT	STEP_START MODE_BIT STEP_CNT_OVFL STEP_CNT_OVFL CT_CT_START ACC_Z<[3:6> ACC_Z<[3:6> ACC_Z<[3:6>	SIG_STEP_EN	T RSTB SIN	STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP EN E UP<7:0> LUW<7:0> 2P PRECISION<6 STE MCLK SEL<3:0> RANGE<3:0> STEP_INT T<15:8>	EP_SAMPLE_CNT<4	1:0>	NEWDATA_Y	RW RW RW RW RW RW RW RW RW RW RW RW RW R	00 00 00 00 00 00 00 00 00 00 00 00 00
0x16 0x15 0x14 0x13 0x12 0x11 0x06 0x07 0x08 0x08 0x08 0x08 0x08 0x08 0x08	INT_EN STEP_CONF PM BW FSR INT_ST STEPCNT	STEP_START WODE_BIT STEP_CNT_OVFL STEP_CNT_OVFL ACC_Z<13:6> ACC_Y<13:6> ACC_Y<13:6>	SIG_STEP_EN		STEP_TIM STEP_TIME STE C_SEL<1:0> DATA_INT STEP_CN	STEP_EN E_UP<7:0> LOW7:0> 3P_PRECISION<6 STE MCLK_SEL<3:0> RANGE<3:0> STEP_INT T<15:8> T<15:8> T<15:8>	BW<4:0>	1:0>		RW RW RW RW RW RW RW RW RW RW RW RW RW R	00 00 00 00 00 00 00 00 00 00 00 00 00

Register Definition 9.2

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default			
Device ID		RW	0xBX									
This register	This register is used to identify the device											

Register 0x01 ~ 0x02 (DXL, DXM)

Register 0x01 ~ 0x02 (DAL, DAN)										
Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default			
					NEWDAT	R	0x00			
					A_X					
DX<13:6>										
DX<13:6> R 0x00 DX: 14bits acceleration data of x-channel. This data is in two's complement. 1, acceleration data of x-channel has been updated since last reading										
	Bit5 14bits accele	Bit5 Bit4 14bits acceleration data o	Bit5 Bit4 Bit3 14bits acceleration data of x-channel. T	Bit5 Bit4 Bit3 Bit2 14bits acceleration data of x-channel. This data is in t	Bit5 Bit4 Bit3 Bit2 Bit1 14bits acceleration data of x-channel. This data is in two's comple	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Image: New DAT A_X New DAT A_X 14bits acceleration data of x-channel. This data is in two's complement.	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W NEWDAT R A_X R 14bits acceleration data of x-channel. This data is in two's complement.			

0, acceleration data of x-channel has not been updated since last reading

13-52-12

Register 0x03 ~ 0x04 (DYL, DYM) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default DY<5:0> NEWDAT R 0x00 ΑY DY<13:6> R 0x00 14bits acceleration data of y-channel. This data is in two's complement. DY: NEWDATA_Y: 1, acceleration data of y-channel has been updated since last reading 0, acceleration data of y-channel has not been updated since last reading Register 0x05 ~ 0x06 (DZL, DZM) Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default Bit7 Bit6 DZ<5:0> NEWDAT R 0x00 ΑZ DZ<13:6> R 0x00 DZ: 14bits acceleration data of z-channel. This data is in two's complement. NEWDATA_Z: 1, acceleration data of z-channel has been updated since last reading 0, acceleration data of z-channel has not been updated since last reading Register 0x07 ~ 0x08 (ID) Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default Bit7 STEP_CNT<7:0> STEP_CNT<15:8> R 0x00 R 0x00 STEP CNT<15:0> 16 bits of step counter Register 0x0a (INT_STAT0) Bit4 R/W Bit7 Bit6 Bit5 Bit3 Bit2 Bit1 Bit0 Default SIG_STE STEP_IN R 0x00 Ρ т SIG_STEP: 1, significant step is active 0, significant step is inactive STEP_INT: 1, step valid interrupt is active 0, step quit interrupt is inactive Register 0x0b (INT_STAT1) Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default Bit7 Bit6 DATA_IIN R 0x00 ΤТ This register indicates interrupt status related to data ready. DATA_INT: 1, data ready interrupt active 0, data ready interrupt inactive Register 0x0d (INT_STAT4) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default STEP_CN R 0x00 T_OVFL STEP_CNT_OVFL: 1, step counter is over-flowed 0, step counter is not over-flowed Register 0x0f (RANGE) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default RANGE<3:0> RW 0x00 RANGE<3:0>: set the full scale of the accelerometer. Setting as following RANGE<3:0> Acceleration range Resolution

KANGL<3.02	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488g/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			BW<4:0>					RW	0x00
BW<4:0>		bandwidth s	setting, as follo	wing					
			BW<4	4:0>	DSR		ODR		7
			xx000)					7
			xx001						
			xx010)					
			xx011						
			xx100)					
			xx101		1024		MCLK/15378		
			xx110)	256		MCLK/3858		
			xx111		128		MCLK/1938		

Register 0x11 (PM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MODE_BI		T_RSTB_SI	NC_SEL<1	MCLK_SEL	<3:0>			RW	0x00
Т		:0>							
MODE_BIT:	1,	set device in	to active mode	Э					

1, set device into active mode 0, set device into standby mode

T_RSTB_SINC_SEL<1:0>: Reset clock setting. The preset time is reserved for CIC filter in digital

11, T_RSTB_SINC=8*MCLK

- 10, T_RSTB_SINC=6*MCLK
- 01, T_RSTB_SINC=4*MCLK 00. T_RSTB_SINC=3*MCLK

UU, I_KSID_SINC=S WOLK							
MCLK_SEL<3:0>:	set the master clock to digital						
MCLK_SEL<3:0>	Freq of MCLK						
0000	500KHz						
0001	333KHz						
0010	200KHz						
0011	100KHz						
0100	50KHz						
0101	25KHz						
0110	12.5KHz						
0111	5KHz						
1xxx	Reserved						

Register 0x12 (STEP CONF0)

Tregierer en										
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
STEP_ST		STEP_SAMPLE_COUNT<4:0>							0x0C	
ART										

STEP_START: start step counter, this bit should be set when using step counter

STEP_SAMPLE_COUNT<4:0>:

sample count setting for dynamic threshold calculation. The actual value is STEP_SAMPLE_COUNT<4:0>*4, default is 0xC, 48 sample count

Register 0x13 (STEP CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CL	. STEP_PRE	CISION<6:0>	RW	0x00					
R									

clear step count in register 0x7 and 0x8 STEP_CLR:

STEP_PRECISION<6:0>:

threshold for acceleration change of two successive sample which is used to update sample_new register in step counter, the actual g value is TEP_PRECISION<6:0>*3.9mg

Register 0x14 (STEP_CONF2)

		/							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME	LOW<7:0>							RW	0x00
STEP TIME	LOW<7:0>:	the short	time window	for a valid ster	p, the actual ti	ime is STEP	TIME LOW<	7:0>*(1/ODR)	

Register 0x15 (STEP CONF3)

gierer									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME_UP<7:0> RW									0x00
STEP_TIME_UP<7:0>: time window for quitting step counter, the actual time is STEP_TIME_UP<7:0>*8*(1/ODR)									

Register 0x16 (INT EN0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	SIG_STE			STEP_EN				RW	0x00
	P_EN								
SIG STE		. enable signif	icant step inte	errupt					

13-52-12

	r, onabio olgrinicant otop intorrapt
	0, disable significant step interrupt
STEP_EN:	1, enable step valid interrupt
	0, disable step valid interrupt

Register 0x17 (INT EN1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			DATA_EN					RW	0x00
DATA_EN:	1,	enable data	ready interrup	t					

0, disable data ready interrupt

Register 0x19 (INT_MAP0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT1_SIG			INT1_ST				RW	0x00
	_STEP			EP					
INT1_SIG_S	STEP: 1,	map significa	ant step interru	upt to INT1 pir	า				

 map significant step interrupt to INT1 pin 0, not map significant step interrupt to INT1 pin

0, not map double tap interrupt to INT1 pin

1, map step valid interrupt to INT1 pin

0, not map step valid interrupt to INT1 pin

Register 0x1a (INT MAP1)

INT1_STEP:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			INT1_DA					RW	0x00
			TA						
INT1_DATA	.: 1,	map data rea	ady interrupt to	o INT1 pin					

1, map data ready interrupt to INT1 pin

0, not map data ready interrupt to INT1 pin

Register 0x1b (INT_MAP2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT2_SIG			INT2_ST			INT2_S	RW	0x00
	_STEP			EP			IG_MO		
							Т		

INT2_SIG_STEP: 1, map significant step interrupt to INT2 pin

0, not map significant step interrupt to INT2 pin

INT2_STEP: 1, map step valid interrupt to INT2 pin

0, not map step valid interrupt to INT2 pin

INT2_SIG_MOT: 1, map significant interrupt to INT2 pin

0, not map significant interrupt to INT2 pin

Register 0x1c (INT_MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			INT2_DA					RW	0x00
			TA						

Bit2

Bit1

INT2_DATA: 1, map data ready interrupt to INT2 pin

0, not map data ready interrupt to INT2 pin

Register 0x1d (SIG_STEP_TH) Bit4 Bit7 Bit6 Bit5

STEP_	_INTERVAL<7:0>	

STEP_INTERVAL <7:0>:

threshold of significant step. When MOD(STEP_CNT, STEP_INTERVAL)=0, SIG_STEP_INT will be generated.

Bit3

Register 0x1f (STEP)

	. (• . =.)								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_ST			STEP_COU	NT_FILT<2:0	>	STEP_AMP	_SEL<1:0>	RW	0x00
ART_CNT									
STEP_STAR	RT_CNT:	1, start	the step cour	nt when step p	attern >=4				

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

R/W

RW

Bit0

Default

0x00

STEP_COUNT_FILT<2:0>:

0, start the step count when step pattern >=8 not open to customer. Used for step count debug. Similar function as time-low. STEP_COUNT_FILT<2:0>*ODR < 100mS

13-52-12

STEP_AMP_SEL<1:0>:

as time-low. STEP_COUNT_FILT<2:0>*ODR < 100mS 11,not trigger the step count when peak-to-peak value <30*(16*LSB) 10,not trigger the step count when peak-to-peak value <150*(16*LSB)

01,not trigger the step count when peak-to-peak value <100*(16*LSB)

00,not trigger the step count when peak-to-peak value <50*(16*LSB)

Register 0x20 (INTPIN_CONF)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
				INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	0x05	
INT2_OD:	1,	open-drain fo	r INT2 pin							
	0,	push-pull for	INT2 pin							
INT2_LVL:	1,	logic high as	active level fo	r INT2 pin						

0, logic low as active level for INT2 pin

INT1_OD: 1, open-drain for INT1 pin

0, push-pull for INT1 pin

INT1_LVL: 1, logic high as active level for INT1 pin 0, logic low as active level for INT1 pin

Register 0x21 (INT_CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD_	SHADOW						LATCH_I	RW	0x00
CLR	_DIS						NT		
INT_RD_CL	_R: 1,	clear all the i	nterrupts in la	tched-mode,	when any rea	d operation to	this device		

0, clear all the interrupts, only when read the register INT_STAT (0x0A~0x0B), no matter the interrupts in latched-mode, or in non-latched-mode

- SHADOW_DIS:
 - DIS: 1, disable the shadowing function for the acceleration data

0, enable the shadowing function for the acceleration data. When shadowing is enabled, the MSB of the acceleration data is locked, when corresponding LSB of the data is reading. This can ensure the integrity of the acceleration data during the reading. The MSB will be unlocked when the MSB is read.

LATCH_INT: 1, interrupt is in latch mode

0, interrupt is in non-latch mode

Register 0x27 (OS_CUST_X)

	Tregleter en		·_/·							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	OS_CUST_X<7:0> RW 0x00									
OS CLIST X<7.0> offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.91mg in 2g range										

CUST_X<7:0>: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.91mg in 2g range, 7.81mg in 4g range, 15.6mg in 8g range, 31.25mg in 16g range, 62.5mg in 32g range

Register 0x	28 (OS_CUS	T_Y)								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
OS_CUST_	_Y<7:0>							RW	0x00	
OS_CUST_	Y<7:0>:	offset cal	ibration of Y a	axis for user, t	he LSB deper	nds on full-sca	le of the devic	ce which is 3.9	91mg in 2g ra	nge, 7.81mg in 4g
		range, 15	.6g in 8g rang	e, 31.25mg in	16g range, 6	2.5mg in 32g	range			

Register 0x29 (OS_CUST_Z) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default OS_CUST_Z<7:0> RW 0x00 0x00 0x00 0x00 0x00 0x00

offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.91mg in 2g range, 7.81mg in 4g range, 15.6g in 8g range, 31.25mg in 16g range, 62.5mg in 32g range

Register 0x32 (ST)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SELFTES					SELFTES			RW	0x00
T_BIT					T_SIGN				
SELFTEST_	_BIT: 1,	, self-test enab	oled. When se	elf-test enable	d, a delay of 3	Bms is necess	ary for the val	ue settling.	
	0	, normal						•	

SELFTEST_SIGN:

1, set self-test excitation positive

0, set self-test excitation negative

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of QST.

Register 0x33 (NVM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
				NVM_LO	NVM_RD	NVM_PR	NVM_LO	RW	0x05
				AD _	Y	OG	AD_DON		
							E		
NVM_LOAD):	1, trigger load	ing register fr	om NVM				-	
		0, not trigger l	oading registe	er form NVM					
		This bit is clea	red when NV	M loading is d	one				
NVM_RDY:		1, NVM is read	dy, loading or	programing N	VM is done				
		0, NVM is not	ready, loadin	g or programm	ing NVM is in	progress.			
		NVM_RDY is	read-only to c	sustomer.	•				
NVM_PRO	G:	1, trigger prog	raming NVM						
		0, not trigger p	programming	NVM					
		This bit is clea	red when NV	M programmir	ig is done				
NVM LOAD	DONE:	1, NVM loadin	g is done		5				
	_		ng is not done						

13-52-12

Register 0x37 (OFFSET_XY)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
OFFSET_X	<10:8>		GAIN_Z<9:8	3>	OFFSET_Y	<10:8>		RW	0x00	
OFFSET_X	<10:8>:	offset value of	x-channel. Thi	s data is the t	rimming data	for x channel	in FT phase,	together with	OFFSET_X<7	/:0> in 0x38.
GAIN_Z<9:	8>:	sensitivity trimn	ning bits for z	channel, toge	ther with GAI	N_Z<7:0> in 0	x3D (total 10	bits).		

OFFSET_Y<10:8>: offset value of y-channel. This data is the trimming data for y channel in FT phase, together with OFFSET_Y<7:0> in 0x39.

Register 0x38 (OFFSET_X)

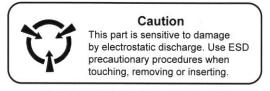
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OFFSET_X	<7:0>							RW	0x00

OFFSET_X<7:0>: offset value of x-channel. This data is the trimming data for x channel in FT phase,

together with OFFSET_X<10:8> in 0x37<7:5>.

The trimming LSB is 3.91mg, the full trimming range in digital domain is +/-4g

User can perform read-modify-write access, to change the register value. However,


when device is re-power-on, or soft-reset, this value will be updated to default again.

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OFFSET	_Y<7:0>							RW	0x00
OFFSET	_Y<7:0>:	offset value	of y-channel.	This data is the	ne trimming da	ata for y chan	nel in FT phas	se, together wi	th OFFSET_Y<
		The trimming	LSB is 3.91m	ng, the full trim	nming range in	n digital doma	in is +/-4g		
		User can per	orm read-mo	dify-write acce	ess, to change	e the register	value. Howev	er, when devi	ce is re-power-c
		Or soft-reset,	this value wil	Il be updated t	to default agai	n.			
Register	0x3a (OFFS								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OFFSET	_Z<7:0>							RW	0x00
OFFSET	_Z<7:0>:	offset value	of z-channel.	This data is th	ne trimming da	ata for z chan	nel in FT phas	se, together w	ith OFFSET_Z<
	_			ng, the full trin				, 0	-
		User can per	form read-mo	odify-write acc	ess, to change	e the register	value. Howev	er, when devi	ce is re-power-o
		User can per or soft-reset.					value. Howev	er, when devi	ce is re-power-o
Register	0x3b (GAIN	or soft-reset,		dify-write acc I be updated to			value. Howev	er, when devi	ce is re-power-o
Register Bit7	0x3b (GAIN Bit6	or soft-reset,					value. Howev	R/W	Default
<u> </u>	Bit6	or soft-reset, _X)	this value will	I be updated to	o default agai	n.			
Bit7 GAIN_X<	Bit6 <7:0>	or soft-reset, _X) Bit5	this value will Bit4	l be updated to Bit3	o default again Bit2	n.		R/W	Default
Bit7 GAIN_X<	Bit6 <7:0>	or soft-reset, _X)	this value will Bit4	l be updated to Bit3	o default again Bit2	n.		R/W	Default
Bit7 GAIN_X< GAIN_X<	Bit6 <7:0> <7:0>:	or soft-reset, _X) Bit5 sensitivity trim	this value will Bit4	l be updated to Bit3	o default again Bit2	n.		R/W	Default
Bit7 GAIN_X< GAIN_X<	Bit6 <7:0>	or soft-reset, _X) Bit5 sensitivity trim	this value will Bit4	l be updated to Bit3	o default again Bit2	n.		R/W	Default
Bit7 GAIN_X< GAIN_X< Register Bit7	Bit6 <7:0> <7:0>: 0x3c (GAIN Bit6	or soft-reset, _X) Bit5 sensitivity trin	this value will Bit4	Bit3 x channel (tot	o default again Bit2 tal 8 bits).	n. Bit1	Bit0	R/W RW	Default 0x00
Bit7 GAIN_X< GAIN_X< Register Bit7 GAIN_Y<	Bit6 <7:0> <7:0>: 0x3c (GAIN Bit6 <7:0>	or soft-reset, _X) 	this value will Bit4 nming bits for Bit4	l be updated to Bit3 x channel (tot Bit3	o default again Bit2 tal 8 bits). Bit2	n. Bit1	Bit0	R/W RW	Default 0x00 Default
Bit7 GAIN_X< GAIN_X< Register Bit7	Bit6 <7:0> <7:0>: 0x3c (GAIN Bit6 <7:0>	or soft-reset, _X) Bit5 sensitivity trin	this value will Bit4 nming bits for Bit4	l be updated to Bit3 x channel (tot Bit3	o default again Bit2 tal 8 bits). Bit2	n. Bit1	Bit0	R/W RW	Default 0x00 Default
Bit7 GAIN_X< GAIN_X< Register Bit7 GAIN_Y< GAIN_Y<	Bit6 37:0> 37:0>: 0x3c (GAIN_ Bit6 37:0> 37:0>: 37:0>:	or soft-reset, _X) 	this value will Bit4 nming bits for Bit4	l be updated to Bit3 x channel (tot Bit3	o default again Bit2 tal 8 bits). Bit2	n. Bit1	Bit0	R/W RW	Default 0x00 Default
Bit7 GAIN_X< GAIN_X< Register Bit7 GAIN_Y< GAIN_Y<	Bit6 <7:0> <7:0>: 0x3c (GAIN Bit6 <7:0>	or soft-reset, _X) 	this value will Bit4 nming bits for Bit4	l be updated to Bit3 x channel (tot Bit3	o default again Bit2 tal 8 bits). Bit2	n. Bit1	Bit0	R/W RW	Default 0x00 Default
Bit7 GAIN_X< GAIN_X< Register Bit7 GAIN_Y< GAIN_Y< Register	Bit6 37:0> 37:0>: 0x3c (GAIN_ Bit6 37:0> 37:0>: 0x3d (GAIN_ Bit6 37:0>	or soft-reset, _X) Bit5 sensitivity trin _Y) Bit5 sensitivity trin _Z)	this value will Bit4 Bit4 Bit4 Bit4 Bit4 Bit4 Bit4 Bit4	I be updated to Bit3 x channel (tol Bit3 y channel (tol	o default again Bit2 tal 8 bits). Bit2 tal 8 bits).	n. Bit1	Bit0	R/W RW RW R/W RW	Default 0x00 Default 0x00

९ ८ _{矽睿}	Document #:	13-52-12	Title: QMA7981 Datasheet	Rev: A
-----------------------------	-------------	----------	--------------------------	--------

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging
QMA7981-TR	-40℃~85℃	LGA-12	Tape and Reel: 5k pieces/reel

CAUTION: ESDS CAT. 1B

FIND OUT MORE

For more information on QST's Accelerometer Sensors contact us at 86-21-50497300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001 : 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.

